408.04=24x^2+18x^2-2(24)(18)*cos(62)

Simple and best practice solution for 408.04=24x^2+18x^2-2(24)(18)*cos(62) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 408.04=24x^2+18x^2-2(24)(18)*cos(62) equation:


Simplifying
408.04 = 24x2 + 18x2 + -2(24)(18) * cos(62)

Reorder the terms for easier multiplication:
408.04 = 24x2 + 18x2 + -2 * 24 * 18 * 62cos

Multiply -2 * 24
408.04 = 24x2 + 18x2 + -48 * 18 * 62cos

Multiply -48 * 18
408.04 = 24x2 + 18x2 + -864 * 62cos

Multiply -864 * 62
408.04 = 24x2 + 18x2 + -53568cos

Reorder the terms:
408.04 = -53568cos + 24x2 + 18x2

Combine like terms: 24x2 + 18x2 = 42x2
408.04 = -53568cos + 42x2

Solving
408.04 = -53568cos + 42x2

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '53568cos' to each side of the equation.
408.04 + 53568cos = -53568cos + 53568cos + 42x2

Combine like terms: -53568cos + 53568cos = 0
408.04 + 53568cos = 0 + 42x2
408.04 + 53568cos = 42x2

Add '-408.04' to each side of the equation.
408.04 + -408.04 + 53568cos = -408.04 + 42x2

Combine like terms: 408.04 + -408.04 = 0.00
0.00 + 53568cos = -408.04 + 42x2
53568cos = -408.04 + 42x2

Divide each side by '53568os'.
c = -0.00761723417o-1s-1 + 0.0007840501792o-1s-1x2

Simplifying
c = -0.00761723417o-1s-1 + 0.0007840501792o-1s-1x2

See similar equations:

| 6+5(2n+2)=4n-20 | | 5x+30=4x+28 | | (X+4)+-1= | | 9-6[4u-1]=u+15 | | 2z-3(z+1)=-(5z-3)+a | | -28=(3b+2)4 | | 4n+4=10-8n | | 8-x=-10 | | 2(1.6y)-1.33=1y+4.13 | | 4[4-(-4x-3)]=96x+88 | | 2x-11=x+2 | | Vf=0-980cm/seg^2×0.34seg^2 | | cos(x)=-0.7 | | 10r^2+7r-4=0 | | 11x-(4x+5)+13=3x | | x^2+x+1=.99 | | 2(5x+33)=155 | | -2(2-3f)= | | M-.2m=25.10 | | 67+350=25x | | 10m^2+43m+12=0 | | 2(2-5d)= | | 2(4)+23= | | -2(2+4)=-44 | | (S-7)(5)= | | -7=2+3(m+5) | | -2(1+x)=13 | | 20+t+0= | | z^2+2(1+2i)z-(11+2i)=0 | | 4x+6+11x-6= | | 5(b+2)+b=20 | | 3y+8=355 |

Equations solver categories